

A Level Statistics

AQA Past Exam SOLUTIONS

TOPIC: The Normal Distribution

For the new specification, students can now use the Casio Claswiz calculator to find Normal probabilities. For old AQA questions this was not the case and more work was involved for the students. Therefore, some of the questions will be worth a lot more marks than will be on offer in an up to date Edexcel exam

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions **on paper**
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise stated, statistical tests should be carried out at the 5% significance level.
- When a calculator is used, the answer should be given to three significant figures unless otherwise stated.

Information

- **You may use the** booklet 'Statistical Formulae and Tables'
- There are **13** questions in this question paper. The total mark for this paper is **217**
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Check your answers if you have time at the end.

AQA_JAN_2012_3

Q	Solution	Marks	Total	Comments
3(a) (i)	$\text{Volume, } X \sim N(32, 10^2)$ $P(X < 40) = P\left(Z < \frac{40-32}{10}\right)$ $= P(Z < 0.8)$ $= 0.788$	M1 A1 A1	3	Standardising 40 with 32 and 10; allow (32 – 40) CAO; ignore inequality and sign May be implied by a correct answer AWRT (0.78814)
(ii)	$P(X > 25) = P(Z > -0.7)$ $= P(Z < +0.7)$ $= 0.758$	M1 A1	2	Area change May be implied by a correct answer or an answer > 0.5 AWRT (0.75804)
(iii)	$P(25 < X < 40) = \text{(i)} - (1 - \text{(ii)})$ $= 0.78814 - (1 - 0.75804) = 0.546$ <p>Note: If (ii) is 0.242, then $(0.788 - 0.242) = 0.546 \Rightarrow \text{M0 A0}$</p>	M1 A1	2	OE; allow new start ignoring (i) & (ii) Allow even if incorrect standardising providing $0 < \text{answer} < 1$ May be implied by a correct answer AWRT (0.54618)
(b)	$P(B > £65) = P\left(Z > \frac{48.5 - 32}{10}\right)$ <p>or</p> $P\left(Z > \frac{65 - 42.88}{13.4}\right)$ $= P(Z > 1.65) = 1 - P(Z < 1.65)$ $= 1 - 0.95053 = 0.049 \text{ to } 0.05(0)$	M1 m1 A1	3	<p>Attempt to change from B to X using (48 to 49), 32 and 10 or Attempt to work with distribution of B using 65, (42.8 to 42.9) and 13.4</p> <p>Area change May be implied by a correct answer or an answer < 0.5</p> <p>AWFW (0.04947)</p>
(c)	<p>Other fuels Other vehicles with an example (not other cars) Other types of customer Minimum purchase (policy) Purchases in integer/fixed £s Customers filling fuel cans</p>	B2,1	2	<p>Size of car/engine/fuel tank $\Rightarrow \text{B0}$ Price of fuel $\Rightarrow \text{B0}$ Customer paying capacity $\Rightarrow \text{B0}$ Must be two clearly different valid reasons for award of B2 Drivers and vehicles related $\Rightarrow \text{B1}$ eg lorry drivers & lorries</p>
			Total	12

AQA_JAN_2013_2

Q	Solution	Marks	Total	Comments
2				In (a), ignore the inclusion of a lower limit of 0; it has no effect on the answer
(a)	<p>Volume, $V \sim N(106, 2.5^2)$</p> $P(V < 110) = P\left(Z < \frac{110-106}{2.5}\right)$ $= P(Z < \underline{1.6})$ $= \underline{0.945}$	M1 A1 A1	3	<p>Standardising 110 with 106 and 2.5; allow (106 – 110)</p> <p>CAO; ignore inequality and sign May be implied by a correct answer</p> <p>AWRT (0.94520)</p>
(b)	$P(V > 100) = P(Z > -2.4) = P(Z < +2.4)$ $= \underline{0.991 \text{ to } 0.992}$	M1 A1	2	<p>Correct area change May be implied by a correct answer or by an answer > 0.5</p> <p>AWFW (0.99180)</p>
(c)	$P(104 < V < 108) = P(-a < Z < a) =$ $P(Z < a) - (1 - P(Z < a))$ <p>or</p> $2 \times P(Z < a) - 1$ $= 0.788 - (1 - 0.788) = 0.788 - 0.212$ <p>or</p> $= 2 \times 0.788 - 1$ $= \underline{0.576}$	M1 A1 A1	3	<p>OE; $a = 0.8$ is not a requirement May be implied by 0.788 seen or by a correct answer</p> <p>AWRT (0.78814/0.21186) Condone 0.211 May be implied by a correct answer</p> <p>AWRT (0.57628)</p>
(d)	$P(V \neq 106) = \underline{1 \text{ or one or unity or } 100\%}$	B1	1	CAO; accept nothing else but ignore additional words providing they are not contradictory (eg certain so = 1)
		Total	9	

AQA JUNE 2012 5

Q	Solution	Marks	Total	Comments
5				
(a)	<u>Weight, $W \sim N(2.75, 0.15^2)$</u> $P(W < 2.8) = P\left(Z < \frac{2.8 - 2.75}{0.15}\right)$ $= P(Z < \underline{0.33 \text{ or } 1/3})$ $= \underline{0.629 \text{ to } 0.633}$	M1		In (a)(i) & (c), ignore the inclusion of a lower limit of 0; it has no effect on either answer Standardising 2.8 with 2.75 and 0.15; allow $(2.75 - 2.8)$ AWRT/CAO; ignore inequality and sign May be implied by a correct answer AWFW (0.63056)
(i)	$P(W > 2.5) = P(Z > -1.67) = P(Z < +1.67)$ $= \underline{0.951 \text{ to } 0.953}$	M1	A1	Correct area change May be implied by a correct answer or an answer > 0.5 AWFW (0.95221)
(ii)			A1	5
(b)	<u>Weight, $X \sim N(5.25, 0.20^2)$</u>			
(i)	$P(5.1 < X < 5.3) = P(Z < 0.25) - P(Z < -0.75)$ $= \underline{0.59871}$ MINUS $[(1 - 0.77337) \text{ or } 0.22663]$ $= \underline{0.372(08)}$	B1	B1	Must have diff of 2 probs for each B1 Accept 0.599 Accept 0.773 or 0.227 AG; do not mark simply on answer
(ii)	$P(0 \text{ in } 4) = [1 - 0.372]^4$ $= 0.628^4 = \underline{0.155 \text{ to } 0.156}$	M1	A1	Accept $[1 - c's (b)(i)]^4$ AWFW (0.15554)
(c)	<u>Weight, $Y \sim N(10.75, 0.50^2)$</u> Variance of $\bar{Y}_6 = \underline{0.5^2/6 = 0.0416 \text{ to } 0.0417}$ or Sd of $\bar{Y}_6 = \underline{0.5/\sqrt{6} = 0.204}$ $P(\bar{Y}_6 < 10.5) = P\left(Z < \frac{10.5 - 10.75}{\sqrt{0.0416}}\right) =$ $P(Z < -1.22) = 1 - P(Z < 1.22) =$ $1 - (0.88877 \text{ to } 0.89065) = \underline{0.109 \text{ to } 0.112}$	B1	M1	CAO or AWFW Stated or used CAO or AWRT Standardising 10.5 with 10.75 and $\sqrt{0.0416}$ OE; allow $(10.75 - 10.5)$ Correct area change May be implied by a correct answer or an answer < 0.5 ; but do not award for use of $z = \pm 0.22$ AWFW (0.11034) (1 - answer) \Rightarrow B1 M1 max
	Total		13	

AQA_JUNE_2013_2

Q	Solution	Marks	Total	Comments
2(a)(i)	$\text{Weight, } X \sim N(421, 2.5^2)$ $P(X = 421) = \underline{0 \text{ or zero or nought or } 0\%}$	B1		Accept percentage equivalents in (a) CAO; accept nothing else but ignore additional words providing that they are not contradictory (eg impossible so = 0)
(ii)	$P(X < 425) = P\left(Z < \frac{425 - 421}{2.5}\right)$ $= P(Z < 1.6) = \underline{0.945 \text{ to } 0.946}$	M1		Standardising 425 with 421 and 2.5 but allow (421 - 425)
(iii)	$P(418 < X < 424) = P(-a < Z < a) =$ $P(Z < a) - (1 - P(Z < a))$ or $2 \times P(Z < a) - 1$ $= 0.885 - (1 - 0.885) = 0.885 - 0.115$ or $= 2 \times 0.885 - 1$ $= \underline{0.769 \text{ to } 0.77}$	A1 M1 A1 A1	6	AWRT (0.94520) OE; $a = 1.2$ or correct standardising are not required May be implied by 0.885 (AWRT) seen anywhere or by a correct answer AWRT (0.88493/0.11507) Implied by a correct answer AWFW (0.76986)
(b)	$0.98 \Rightarrow z = \underline{2.05 \text{ to } 2.06}$ $\left(\frac{x - 421}{2.5}\right) = 2.0$ to 2.4	B1 M1 A1	3	AWFW (2.0537) Standardising x with 421 and 2.5 but allow (421 - x); and equating to a z-value (<i>ignore sign</i>) May be implied by a correct answer AWFW (426.13) <i>Must be consistent signs throughout</i>
(c)	$0.01 \Rightarrow z = \underline{-2.33 \text{ to } -2.32}$ $z = \left(\frac{410 - \mu}{3.0 \text{ or } 2.5}\right)$ $\left(\frac{410 - \mu}{3.0}\right) = -2.6$ to -2.3 $\mu = \underline{417}$	B1 M1 A1 Adep1	4	AWFW; (<i>ignore sign</i>) (-2.3263) Standardising 410 with μ and (3.0 or 2.5) but allow ($\mu - 410$) Equating to a z-value (<i>ignore sign</i>) May be implied by a correct answer AWRT (416.98) Dependent on previous A1 <i>Must be consistent signs throughout</i>
	Total		13	

AQA_JAN_2007_6

Q	Solution	Marks	Total	Comments
(a)(i)	$P(X < 45) = P\left(Z < \frac{45-37}{8}\right)$ $= P(Z < 1)$ $= 0.841$	M1 A1 A1	3	Standardising (44.5, 45 or 45.5) with 37 and ($\sqrt{8}$, 8 or 8^2) and/or $(37 - x)$ CAO; ignore sign AWRT (0.84134)
(ii)	$P(30 < X < 45) = (i) - P(X < 30)$ $= (i) - P(Z < -0.875)$ $= (i) - [1 - (0.80785 \text{ to } 0.81057)]$ $= 0.648 \text{ to } 0.652$	M1 m1 A1	3	Used; OE Area change AWFW (0.65056)
(b)	$0.12 \Rightarrow z = 1.17 \text{ to } 1.18$ $z = \frac{45 - 40}{\sigma}$ $= 1.175$ $\sigma = 4.23 \text{ to } 4.28$	B1 M1 m1 A1	4	AWFW; ignore sign (1.1750) Standardising 45 with 40 and σ Equating z -term to z -value but not using 0.12, 0.88 or $ 1 - z $ AWFW
(c)	Route A: $P(X > 45) = 1 - (a)(i)$ Route B: $P(Y > 45) = 0.12$ so Monica should use Route B (smaller prob)	B1 ↑Dep↑ B1 [√]	2	OE; must use 45 √ on (a)(i); allow Route Y
(d)	Mean of $\bar{W} = 18$ Variance of $\bar{W} = \frac{12^2}{36} = 4$ $P(\bar{W} > 20) = P\left(Z > \frac{20-18}{2}\right)$ $= P(Z > 1) = 0.159$	B1 B1 M1 A1 [√]	4	CAO; can be implied by use in standardising CAO; OE Standardising 20 with 18 and 2 and/or $(18 - 20)$ AWRT (0.15866); √ on (a)(i) if used
(e)	In part (d)	B1	1	CAO; OE
	Total		17	

AQA_JAN_2010_1

Q	Solution	Marks	Total	Comments
1(a)(i)	$X \sim N(10.2, 0.15^2)$ $P(X < 10.5) = P\left(Z < \frac{10.5 - 10.2}{0.15}\right)$ $= P(Z < 2)$ $= 0.977$	M1 A1 A1	3	Standardising (10.45, 10.5 or 10.55) with 10.2 and ($\sqrt{0.15}$, 0.15 or 0.15^2) and/or $(10.2 - x)$ CAO; ignore inequality and sign May be implied by a correct answer AWRT (0.97725)
(ii)	$P(10.0 < X < 10.5)$ $= [C's (a)(i)] - P(X < 10.0)$ $= (a)(i) - P(Z < -1.33)$ $= (a)(i) - (1 - p)$ $= 0.97725 - (1 - 0.90824)$ $= 0.885 \text{ to } 0.887$	M1 m1 A1	3	Or equivalent; must be clear correct method if answer incorrect and answer > 0 Method correct using -1.3 gives 0.88 to 0.881 $\Rightarrow M1 \text{ m1 A0}$ Area change May be implied by a correct answer or answer > 0.5 AWFW (0.88604) M1 m1 A1 for $0.90824 - [1 - (a)(i)] = 0.886$ M1 m0 A0 for $(a)(i) - 0.90824 = 0.0685$ M0 m0 A0 for answer < 0
(b)	$P(X > 10) = p[\text{from (a)(ii)}]$ $= 0.908 \text{ to } 0.909$ $P(6 \text{ rolls} > 10) = 0.90824^6$ $0.56 \text{ to } 0.565$ <p>Note: B0F M1 A0 is possible</p>	B1F M1 A1	3	Correct value or F on value used or implied in (a)(ii) providing > 0.5 Use of -1.3 gives 0.9032 Accept any probability to power 6 AWFW
		Total	9	

AQA_JAN_2008_1

Q	Solution	Marks	Total	Comments
1(a)(i)	$P(X < 3.5) = P\left(Z < \frac{3.5 - 3.3}{0.16}\right) =$ $P(Z < 1.25) =$ 0.894 to 0.895	M1 A1 A1		Standardising (3.45, 3.5 or 3.55) with 3.3 & ($\sqrt{0.16}$, 0.16 or 0.16 ²) and/or (3.3 - x) CAO; ignore sign AWFW (0.89435)
(ii)	$P(X > 3.0) = P\left(Z > \frac{3.0 - 3.3}{0.16}\right) =$ $P(Z > -1.875) = P(Z < 1.875) =$ 0.969 to 0.97(0)	M1 m1 A1	3	Standardising (2.95, 3 or 3.05) with 3.3 & ($\sqrt{0.16}$, 0.16 or 0.16 ²) and/or (3.3 - x) Correct area change AWFW (0.96960)
(iii)	$P(3.0 < X < 3.5) = (i) - [1 - (ii)] =$ 0.863 to 0.865	M1 A1	2	OE AWFW: CSO (0.86395)
(b)	$0.025 \Rightarrow z = 1.96$ $z = \frac{3.1 - \mu}{0.16}$ $= -1.96$ Hence $\mu = 3.4(0)$ to 3.42	B1 M1 m1 A1	4	CAO; ignore sign Standardising 3.1 with μ and 0.16; allow ($\mu - 3.1$) Equating z -term to z -value; not using 0.025, 0.975, $ 1 - z $ or $\Phi(0.025) = 0.507$ to 0.512 AWFW; CSO (3.4136)
	Total		12	

AQA_JAN_2009_3

Q	Solution	Marks	Total	Comments
3 (a)(i)	$X \sim N(5.08, 0.05^2)$ $P(X < 5) = P\left(Z < \frac{5-5.08}{0.05}\right) =$ $P(Z < -1.6)$ $= 1 - P(Z < 1.6) = 1 - 0.9452$ $= 0.0545 \text{ to } 0.055$	M1 m1 A1	 3	Standardising (4.5, 4.95, 5, 5.05 or 5.5) with 5.08 and ($\sqrt{0.05}$, 0.05 or 0.05 ²) and/or (5.08 - x) Area change; may be implied AWFW (0.0548) (1 - answer) \Rightarrow M1 max Or equivalent; must be clear correct method if answer incorrect and answer > 0
(ii)	$P(5 < X < 5.10) = P(X < 5.10) - (i)$ $= P(Z < 0.4) - (i)$ $= 0.65542 - 0.0548$ $= 0.6 \text{ to } 0.601$	M1 A1	 2	AWFW (0.60062)
(b)(i)	Variance of $\bar{X}_4 = 0.05^2/4 = 0.000625$ SD of $\bar{X}_4 = 0.05/2 = 0.025$ $P(\bar{X}_4 > 5.05) = P\left(Z > \frac{5.05-5.08}{0.025}\right)$ $= P(Z > -1.2) = P(Z < 1.2)$ $= 0.884 \text{ to } 0.886$	B1 M1 m1 A1	 4	CAO; stated or used Standardising 5.05 with 5.08 and 0.025; allow (5.08 - 5.05) Area change; may be implied AWFW (0.88493) (1 - answer) \Rightarrow B1 M1 max
(ii)	Zero	B1	1	CAO; or equivalent (ignore any working)
(c)	$1\% (0.01) \Rightarrow z = -2.33 \text{ to } -2.32$ $z = \frac{5-\mu}{0.05}$ $= -2.3263$ $\mu = 5.11 \text{ to } 5.12$	B1 M1 A1 A1	 4	AWFW; ignore sign (-2.3263) Standardising 5 with μ and 0.05 or 0.025; allow ($\mu - 5$) Only allow: ± 2.05 to ± 2.06 ± 2.32 to ± 2.33 ± 2.57 to ± 2.58 AWFW (5.1163)
	Note: $\frac{5-\mu}{0.05} = 2.3263 \Rightarrow 5.116$ $\Rightarrow B1 M1 A1 A0$			Or equivalent inconsistent signs
		Total	14	

AQA_JAN_2011_6

Q	Solution	Marks	Total	Comments
6(a)	Volume, $V \sim N(412, 8^2)$			
(i)	$P(V < 400) = P\left(Z < \frac{400 - 412}{8}\right)$ $= P(Z < -1.5) = 1 - P(Z < 1.5)$ $= 1 - 0.93319 = 0.066 \text{ to } 0.067$	M1		Standardising 400 with 412 and 8 and/or $(412 - x)$
		M1		Area change May be implied by a correct answer or an answer < 0.5
		A1	3	AWFW (0.06681)
(ii)	$P(V > 420) = P(Z > 1)$ $= 1 - P(Z < 1) = 1 - 0.84134$ $= 0.158 \text{ to } 0.159$	B1		CAO but ignore inequality and sign May be implied by a correct answer
		B1	2	AWFW (0.15866)
(iii)	$P(V = 410) = 0$ or zero or impossible	B1	1	Ignore any working B0 for 'impossible to calculate' or 'no answer'
(b)(i)	A statement/indication that $(-) 1.6449$ and/or 2.3263 are z -values Do not allow $\Phi(0.99) = 2.3263$, etc but allow $\Phi^{-1}(0.99) = 2.3263$ Do not award for z -value(s) simply embedded in standardisation statement(s)	B1		Simple statement that $z = \pm 1.6449$ and/or $z = \pm 2.3263$ or sketch of normal curve with at least one z -value marked
	$A \text{ clear use of } z = \frac{v - \mu}{\sigma} \text{ or } v = \mu + 2\sigma$ with 400 and/or 420 (condone sign errors)	M1		SC Immediate algebraic use of $v - \mu = z\sigma \Rightarrow$ B1 M1 A0
	The two given equations correctly derived	A1	3	AG; watch for sign inconsistencies
(ii)	Thus $20 = (2.3263 + 1.6449)\sigma$	M1		A sensible (one that would lead to values required if completed correctly) attempt at solving the two given equations by eliminating μ or σ Do NOT allow MC or MR
	$\sigma = 5.04$	A1		AWRT (5.03626)
	$\mu = 408$	A1	3	AWRT (408.284)
	Total		12	
	TOTAL		75	

AQA_JUNE_2007_7

Q	Solution	Marks	Total	Comments
7(a)	Time, $X \sim N(48, 20^2)$			
(i)	$P(X < 60) = P\left(Z < \frac{60-48}{20}\right) =$	M1		Standardising (59.5, 60 or 60.5) with 48 and ($\sqrt{20}$, 20 or 20^2) and/or $(48 - x)$
	$P(Z < 0.6) = 0.725$ to 0.73	A1	2	AWFW (0.72575)
(ii)	$P(30 < X < 60) =$ $P(X < 60) - P(X < 30) =$ $(i) - P(X < 30) =$ $(i) - P(Z < -0.9) =$	M1		Difference or equivalent Standardising other than 60 and 30 \Rightarrow max of M1 m1 A0
	$(i) - \{1 - P(Z < +0.9)\} =$ $0.72575 - \{1 - 0.81594\} =$	m1		Area change
	0.54 to 0.542	A1	3	AWFW (0.54169)
(iii)	$0.9 \Rightarrow z = 1.28$ to 1.282	B1		AWFW (1.2816)
	$z = \frac{k-48}{20}$	M1		Standardising k with 48 and 20
	$= 1.2816$	m1		Equating z -term to z -value; not using 0.9, 0.1, $ 1 - z $ or $\Phi(0.9) = 0.81594$
	$k = 73.6$ to 74	A1	4	AWFW
(b)	Time, $Y \sim N(37, 25^2)$			
(i)	Use of $\mu - (2 \text{ or } 3) \times \sigma = 37 - (50 \text{ or } 75)$	M1		Or equivalent justification
	$< 0 \Rightarrow$ likely negative times	B1	2	for (likely) negative times
(ii)	Central Limit Theorem or n large / > 30	B1	1	
(iii)	Variance of $\bar{Y} = \frac{25^2}{35}$	B1		OE; stated or used
	$P(\bar{Y} > 40) = P\left(Z > \frac{40-37}{25/\sqrt{35}}\right) =$	M1		Standardising 40 with 37 and $25/\sqrt{35}$ and/or $(37 - 40)$
	$P(Z > 0.71) = 1 - P(Z < 0.71) =$	m1		Area change
	0.238 to 0.24	A1	4	AWFW (1 - 0.76115)
	Total		16	
	TOTAL		75	

AQA_JUNE_2008_5

Q	Solution	Marks	Total	Comments
5	Height $X \sim N(140, 2.5^2)$			
(a)(i)	$P(X < 145) = P\left(Z < \frac{145-140}{2.5}\right) =$ $P(Z < 2) =$ 0.977 to 0.98(0)	M1 A1 A1	3	Standardising (144.5, 145 or 145.5) with 140 and ($\sqrt{2.5}$, 2.5 or 2.5^2) and/or (140 – x) 2 CAO; ignore sign AFWW (0.97725)
(ii)	$P(138 < X < 142) =$ $P(X < 142) - P(X < 138) =$ $P(Z < 0.8) - P(Z < -0.8) =$ $P(Z < 0.8) - \{1 - P(Z < 0.8)\} =$ $(0.78814) - (1 - 0.78814) =$ 0.576 to 0.58(0)	M1 B1 m1 A1	4	Difference (142 – 138) 0.8 CAO Correct area change AFWW (0.57628)
(b)	$0.85 (85\%) \Rightarrow z = -1.03 \text{ to } -1.04$ $z = \frac{x-140}{2.5}$ $= \pm 1.03 \text{ to } \pm 1.04$ Hence $x = 137.3 \text{ to } 137.5$	B1 M1 A1 A1	4	AFWW; ignore sign (-1.0364) Standardising x with 140 and 2.5; allow (140 – x) Equating z -term to the z -value AFWW; CSO (137.41)
(c)	Variance of $\bar{X}_4 = \frac{2.5^2}{4} = 1.56(25)$ SD of $\bar{X}_4 = \frac{2.5}{2} = 1.25$ $P(\bar{X}_4 > 139) = P\left(Z > \frac{139-140}{\sqrt{2.5^2/4}}\right) =$ $P(Z > -0.8) = P(Z < 0.8) =$ 0.788 to 0.79(0)	B1 M1 m1 A1	4	CAO; stated or used Standardising 139 with 140 and 1.25; allow (140 – 139) Correct area change AFWW (0.78814)
	Total		15	

AQA_JUNE_2009_3

Q	Solution	Marks	Total	Comments
3(a)	$X \sim N(253, 5^2)$			
(i)	$P(X < 250) = P\left(Z < \frac{250-253}{5}\right) =$ $P(Z < -0.6) = 1 - P(Z < 0.6)$ $= 1 - 0.72575$ $= 0.274 \text{ to } 0.275$	M1 m1 A1	3	Standardising (249.5, 250 or 250.5) with 253 and $(\sqrt{5}, 5 \text{ or } 5^2)$ and/or $(253 - x)$ Area change; may be implied AWFW (0.27425) $(1 - \text{answer}) \Rightarrow M1 \text{ max}$
(ii)	$P(245 < X < 250) = [C's(a)(i)] - P(X < 245)$ $= (i) - P(Z < -1.6) = 0.27425 - 0.0548$ $= 0.219 \text{ to } 0.22(0)$	M1 A1	2	Or equivalent; must be clear correct method if answer incorrect and answer > 0 AWFW (0.21945) M1 A0 for $[1 - (i)] - 0.0548 = 0.67095$ M0 A0 for $0.9452 - [(i)] = 0.67095$ M1 A1 for $0.9452 - [1 - (i)] = 0.21945$
(iii)	$P(X = 245) = 0 \text{ or zero or impossible}$	B1	1	Ignore any working B0 for 'for impossible to calculate'
(b)	$98\% (0.98) \Rightarrow z = -2.05 \text{ to } -2.06$ $z = \frac{245 - 253}{\sigma}$ $= -2.0537$ $\sigma = 3.88 \text{ to } 3.9(0)$	B1 M1 A1		AWFW; ignore sign (-2.0537) Standardising 245 with 253 and σ ; allow $(253 - 245)$ Only allow: $\pm 2.05 \text{ to } \pm 2.06$ $\pm 2.32 \text{ to } \pm 2.33$ AWFW (3.8954)
Note:			4	Or equivalent inconsistent signs
		Total	10	

AQA JUNE 2010 3

Q	Solution	Marks	Total	Comments
3 (a) (i)	<p>Time, $X \sim N(65, 20^2)$</p> $P(X < 90) = P\left(Z < \frac{90-65}{20}\right) =$ $\left[P\left(Z < \frac{0-65}{20}\right) = P(Z < -3.25) = 0.00058 \right]$ $= P(Z < 1.25)$ $= 0.893 \text{ to } 0.895$	M1		<p>Standardising (89.5, 90 or 90.5 or 59.5, 60 or 60.5) with 65 and $(\sqrt{20}, 20$ or $20^2)$ and/or $(65 - x)$</p> <p>May be gained in (a)(i) or (a)(ii)</p> <p>CAO; ignore inequality and sign May be implied by a correct answer</p>
		A1		AWFW (0.89435)
(ii)	$P(X > 60) = P(Z > -0.25)$ $= P(Z < 0.25)$ $= 0.598 \text{ to } 0.599$	M1	5	<p>Area change May be implied by a correct answer or answer > 0.5</p> <p>AWFW (0.59871)</p>
(b) (i)	$P(1 \text{ in } 6 = 60) = 0 \text{ or zero or impossible}$	B1	1	Ignore any working B0 for 'impossible to calculate'
(ii)	$P(X < 60) = 1 - [(a)(ii)] \text{ or } (0.401 \text{ to } 0.402)$ $P(6 \text{ in } 6 < 60) = p^6 \text{ with } 0 < p < 1$ $= (0.40129)^6 = 0.004 \text{ to } 0.00425$	M1		<p>May be implied</p> <p>Any probability to power 6; do not allow multiplying factors</p>
		A1dep	3	Dependent on M1 M1 (0.0041759)
(iii)	<p>Variance of $\bar{X}_6 = 20^2/6 = 66.6 \text{ to } 66.7$ or Sd of $\bar{X}_6 = 20/\sqrt{6} = 8.16 \text{ to } 8.17$</p> $P(\bar{X}_6 < 60) = P\left(Z < \frac{60-65}{20/\sqrt{6}}\right) =$ $P(Z < -0.61) = 1 - P(Z < 0.61)$ $= 1 - 0.72907 = 0.27(0) \text{ to } 0.271$ <p>Note: Watch for answers to (ii) and (iii) interchanged</p>	B1 M1 M1 A1	4	<p>CAO/AWFW Stated or used anywhere in (b) CAO/AWFW</p> <p>Standardising 60 with 65 and $20/\sqrt{6}$ or equivalent allow $(65 - 60)$</p> <p>Area change May be implied by a correct answer or answer < 0.5</p> <p>AWFW (0.27093) $(1 - \text{answer}) \Rightarrow B1 M1 \text{ max}$</p>
	Total		13	

AQA_JUNE_2011_2

Q	Solution	Marks	Total	Comments
2				
(a)(i)	<p>Diameter, $D \sim N(57.15, 0.04^2)$</p> $P(D < 57.2) = P\left(Z < \frac{57.2 - 57.15}{0.04}\right)$ $= P(Z < 1.25)$ $= 0.894 \text{ to } 0.895$	M1 A1 A1	3	Standardising 57.2 with 57.15 and 0.04; allow $(57.15 - 57.2)$ CAO; ignore inequality and sign May be implied by a correct answer AWFW (0.89435)
(ii)	$P(57.1 < D < 57.2)$ $= p - (1 - p)$ $= 2 \times 0.89435 - 1 = 0.788 \text{ to } 0.79(0)$	M1 A1	2	Allow even if incorrect standardising providing $p - (1 - p)$ seen May be implied by a correct answer AWFW (0.78870)
(b)(i)	$P(16 \text{ balls} < 57.2) = p^{16} \text{ with } 0 < p < 1$ $= [(a)(i)]^{16} = (0.89435)^{16} = 0.166 \text{ to } 0.17(0)$	M1 A1	2	Any probability to power 16 or $1 - p^{16}$; do not allow multiplying factors <i>If only seen in (b)(ii), allow just M1</i> AWFW (0.16754)
(ii)	<p>Variance of $\bar{D}_{16} = 0.04^2/16 = 0.0001$</p> <p>or</p> <p>Sd of $\bar{D}_{16} = 0.04/\sqrt{16} = 0.01$</p> $P(\bar{D}_{16} > 57.16) = P\left(Z > \frac{57.16 - 57.15}{0.01}\right)$ $= P(Z > 1) = 1 - P(Z < 1)$ $= 1 - 0.84134 = 0.158 \text{ to } 0.159$	B1 M1 m1 A1	4	CAO Stated or used (see Notes below) CAO <i>If only seen in (b)(i), allow just B1</i> Standardising 57.16 with 57.15 and 0.01 or equivalent ; allow $(57.15 - 57.16)$ Area change May be implied by a correct answer or answer < 0.5 AWFW (0.15866) $(1 - \text{answer}) \Rightarrow B1 M1 \text{ max}$
Notes:	Ignore partial/incomplete attempts at (ii) in (i) if followed by correct method			Mark two complete answers in (i) as two attempts so $(0 + 2)/2 \Rightarrow 1\text{max}$
	Answer to (i) or (ii) repeated			Mark as per scheme; thus $(2 \text{ max}, 0)$ or $(0, 4 \text{ max})$
	Total		11	

AQA_JUNE_2015_2

Q	Solution	Marks	Total	Comments
2 (a)(i)	$\begin{aligned} P(X < 90) &= P\left(Z < \frac{90-91}{0.8}\right) \\ &= P(Z < -1.25) = 1 - P(Z < -1.25) \\ &= (1 - 0.89435) = \underline{0.105 \text{ to } 0.106} \end{aligned}$	M1 m1 A1	(3)	Accept percentage equivalent answers in (a) but see GN3 Standardising 90 with 91 and 0.8; allow (91 - 90) Correct area change Can be implied by a correct answer or by an answer < 0.5 AFWW (0.10565)
(ii)	$P(X \neq 90) = \underline{1 \text{ or one or unity or } 100\%}$	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)
Note	1 $P(X \neq 90) = P(Z \neq 0) \Rightarrow B0$ unless followed by 1 OE			
(iii)	$\begin{aligned} P(91 < X < 92.5) &= P(0 < Z < 1.875) \\ \text{or} \quad &= (0.969 \text{ to } 0.972) - 0.5 \\ &= 0.5 - (0.028 \text{ to } 0.031) \\ &= \underline{0.47} \end{aligned}$	B1 B1	(2)	AFWW/CAO OE; can be implied by a correct final answer CAO/AFWW AWRT (0.46960)
			6	
(b)	$\begin{aligned} 1\% (0.01) \Rightarrow z &= \underline{-2.33 \text{ to } -2.32} \\ P(Y < 150) &= P\left(Z < \frac{150-153}{\sigma}\right) \\ \frac{\pm(150-153)}{\sigma} &= \begin{cases} \pm 1.28 \text{ AWRT} \\ \text{or} \\ \pm 2.32 \text{ to } \pm 2.33 \text{ AFWW} \end{cases} \\ \sigma &= \underline{1.3} \end{aligned}$	B1 M1 m1 A1	4	AFWW; seen anywhere, ignore sign (-2.3263) Standardising 150 with 153 and σ s; allow (153 - 150) (-1.2816) Can be implied by a correct answer (-2.3263) AWRT (1.28960)
Note	1 Award A0 if the signs are not consistent throughout, so, for example, $(150 - 153)/\pm 2.3263$ gives $\sigma = 1.3 \Rightarrow B1, M1, m1, A0$			
		Total	10	

AQA_JUNE_2014_2

Q	Solution	Marks	Total	Comments
2	No MR or MC in this question			Accept %age equivalents in (a)(i) to (iii)
(a)	Time, $X \sim N(7.5, 1.6^2)$			
(i)	$P(X < 10) = P\left(Z < \frac{10 - 7.5}{1.6}\right)$ $= P(Z < 1.5625) = \underline{0.94}$	M1 A1	(2)	Standardising 10 with 7.5 and 1.6 but allow $(7.5 - 10)$; $z^2 \Rightarrow M0$ AWRT (0.94091)
(ii)	$P(X > 6) = P(Z > -0.9375) = P(Z < 0.9375)$ $= \underline{0.82 \text{ to } 0.83}$	M1 A1	(2)	Correct area change; 0.9375 or correct standardising are not required Can be implied by final answer > 0.5 AWFW (0.82575)
(iii)	$P(5 < X < 10) = P(Z < 1.5625) - P(Z < -1.5625) =$ $(i) - [1 - (i)] \quad \text{or} \quad 1 - 2 \times [1 - (i)]$ $= [2 \times (i)] - 1$ $= 2 \times 0.94091 - 1 = \underline{0.88}$	M1 A1	(2)	OE; any correct difference in areas using (a)(i) or $P(5 < X < 10)$ Can be implied by a correct final answer AWRT (0.88182)
			6	
(b)	$80\% (0.8) \Rightarrow z = \underline{0.84}$ $P(Y < 15) = P\left(Z < \frac{15 - \mu}{2.4 \text{ or } 1.6}\right)$ $\left(\frac{15 - \mu}{2.4}\right) = 0.84(16) \text{ or } 1.28(16)$ $\mu = \underline{12.95 \text{ to } 13}$	B1 M1 M1 A1		AWRT; ignore sign (0.8416) Standardising 15 with μ and (2.4 or 1.6) but allow $(\mu - 15)$ Equating expression with $\sigma = 2.4$ to either z-value (ignore sign) Can be implied by a correct answer AWFW (12.9802) Must be consistent signs throughout
			4	
		Total	10	

AQA_JUNE_2017_3

Q	Solution	Marks	Total	Comments
3 (a)(i)	Accept the equivalent percentage answers with %‐sign (see GN5) $\begin{aligned} P(W < 9) &= P\left(Z < \frac{9 - 8.25}{1.25}\right) \\ &= P(Z < 0.6) = \underline{0.725 \text{ to } 0.726} \end{aligned}$	M1 A1	(2)	Standardising 9 with 8.25 and 1.25; allow (8.25 – 9) AWFW (0.72575)
(ii)	$\begin{aligned} P(W > 8) &= P(Z > -\underline{0.2}) = P(Z < \underline{0.2}) \\ &= \underline{0.579} \end{aligned}$	B1 B1	(2)	CAO; ignore sign AWRT (0.57926)
(iii)	$P(W \neq 8.25) = \underline{1 \text{ or one or unity or } 100\%}$	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)
(iv)	$\begin{aligned} P(8 < W < 10) &= P(-0.2 < Z < 1.4) \\ &= 0.91924 - (1 - (ii)) \\ &= \underline{0.498 \text{ to } 0.499} \end{aligned}$	B2	(2)	AWFW (0.49850)
			7	
(b)	$\mu = \underline{15}$ $2.5\% \Rightarrow z = \underline{1.96}$ $(20 - 15)/\sigma = 1.96 \text{ or } (10 - 15)/\sigma = -1.96$ $\text{or } 1.96\sigma = 5$ $\sigma = \underline{2.55}$ OR $2.5\% \Rightarrow z = \underline{1.96}$ $(20 - \mu)/\sigma = 1.96 \text{ or } \mu + 1.96\sigma = 20$ $(10 - \mu)/\sigma = -1.96 \text{ or } \mu - 1.96\sigma = 10$ $\sigma = \underline{2.55}$ $\mu = \underline{15.0}$	B1 B1 M1 A1 (B1) (M1) (A1) (B1)	CAO; (by symmetry) AWRT; ignore sign OE; correct equation AWRT (2.55102) AWRT; ignore sign OE; two correct equations AWRT (2.55102) AWRT (14.998 to 15.002)	
			4	
		Total	11	

AQA_JUNE_2018_3

Q	Solution	Mark	Total	Comment
3				
(a)(i)	$P(X < 377.5) = P\left(Z < \frac{377.5 - 365.0}{10.0}\right) =$ $P(Z < 1.25) = \underline{0.894}$	M1 A1	(2)	Standardising 377.5 with 365 and 10 but allow (365 - 372.5) AWRT (0.89435)
(ii)	$P(X > 367.5) = P(Z > 0.25) =$ $1 - P(Z < 0.25) = 1 - 0.59871$ $= \underline{0.401}$	M1 A1	(2)	Area change; can be implied by answer < 0.5 AWRT (0.40129)
(iii)	$P(365 < X < 367.5) = [1 - (ii)] - 0.5$ $= \underline{0.099}$	B2	(2)	AWRT (0.09871)
			6	
(b) (i)	$0.05(0.95) \Rightarrow z = \underline{-1.64 \text{ to } -1.65}$ $\frac{450 - 475}{\sigma} = \begin{cases} \pm 1.28 \text{ AWRT} \\ \pm 1.64 \text{ to } \pm 1.65 \\ \pm 1.96 \text{ AWRT} \end{cases}$ $\sigma = \underline{15.2}$	B1 M1 A1	3	AWFW; ignore sign (-1.6449) Standardising 450 with 475 and σ but allow (475 - 450) and equating to one of 3 listed z-values CAO (15.198492) Must be consistent signs giving $\sigma > 0$
(ii) (A)	$P(12 \text{ ELP} > 450.0) = 0.95^{12} = \underline{0.54 \text{ to } 0.541}$	B1	(1)	AWFW (0.540360)
(B)	$Sd(\bar{Y}_{12}) = \frac{15.1 \text{ to } 15.3}{\sqrt{12}} = \underline{4.36 \text{ to } 4.42}$ or $Var(\bar{Y}_{12}) = \frac{15.1^2 \text{ to } 15.3^2}{12} = \underline{19.00 \text{ to } 19.51}$ $P(\bar{Y}_{12} > 470.0) = P\left(Z > \frac{470.0 - 475.0}{(b)(i)/\sqrt{12}}\right)$ $= P(Z > \underline{-1.13 \text{ to } -1.15})$ $= \underline{0.87 \text{ to } 0.875}$	B1 M1 A1 A1	(4)	AWFW (4.387862) OE AWFW (19.253333) Standardising 470 with 475 and ((b)(i))/ $\sqrt{12}$ (OE); (b)(i)>0 and allow (475 - 470) AWFW; ignore sign Can be implied by answer AWFW (0.87275)
			5	
		Total	14	