

A Level Statistics

AQA Past Exam Questions

SOLUTIONS

TOPIC: Discrete Random Variables

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions **on paper**
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise stated, statistical tests should be carried out at the 5% significance level.
- When a calculator is used, the answer should be given to three significant figures unless otherwise stated.

Information

- **You may use the** booklet 'Statistical Formulae and Tables'
- There are **17** questions in this question paper. The total mark for this paper is **158**
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Check your answers if you have time at the end.

AQA_JUNE_2015_7

(a)	$p = 1 - (\text{sum of Ps}) = 0.12$ p is probability that Angus has to do all the work alone	B1 E1		Anything conveying this concept
			2	
(b)	$E(X) = 0 \times p + 1 \times 0.15 + 2 \times 0.2 + 3 \times 0.21 + 4 \times 0.18 + 5 \times 0.14 = 2.6$ $E(X^2) = 0^2 \times p + 1^2 \times 0.15 + 2^2 \times 0.2 + 3^2 \times 0.21 + 4^2 \times 0.18 + 5^2 \times 0.14 (= 9.22)$ $\text{Var}(X) = '9.22' - '2.6'^2 (= 2.46)$ $\text{s.d.} = \sqrt{2.46} = 1.57$	M1 A1 M1 m1 A1		Or B2 for answer alone Complete method incl – $E(X^2)$ Or similar totally correct working AG SC: $E(X^2) = 9.22$ with no explanation followed by $\text{Var}(X) = 9.22 - 2.6^2$, $\text{s.d.} = \sqrt{2.46} = 1.57$ earns B2 SC: $\text{s.d.} = \sqrt{(9.22 - 2.6^2)}$ with no explanation for 9.22 earns B1
			5	

AQA_JAN_2012_3

3(a)(i)	$E(X) = 0 \times 0.1 + 1 \times 0.15 + 2 \times 0.25 + 3 \times 0.35 + 4 \times 0.15 = 2.3$ $E(X^2) = 0^2 \times 0.1 + 1^2 \times 0.15 + 2^2 \times 0.25 + 3^2 \times 0.35 + 4^2 \times 0.15 (= 6.7)$ $\text{Var}(X) = "6.7" - 2.3^2 = 1.41$ $\text{s.d.} = 1.19$	M1 M1 m1 A1	4	Must see this working for this M1 These 3 marks are to be given if CAO seen from calculator work. AWRT 1.19
(ii)	$2.3 \times 24 - 1.7 \times 16$ = (£)28	M1 A1	2	Or by direct calculation of profit from probability distribution. AG
(b)(i)	0.5	B1	1	
(ii)	$E(X) = 0 \times 0.1 + 1 \times 0.15 + 2 \times 0.25 + 3 \times 0.5 = 2.15$ $2.15 \times 24 - 0.85 \times 16$ = (£)38	B1 M1 A1	3	
(iii)	More profit	E1	1	
(iv)	Might lose/disappoint customers who request lobster but cannot have it.	E1	1	OE Must refer to losing customers not profit
	Total		12	

AQA_JAN_2013_5

5 (a)	Mean = $1 \times 0.03 + 2 \times 0.12 + \text{etc.}$ = 3.51 $E(X^2) = 1 \times 0.03 + 4 \times 0.12 + \dots$ $\text{Var}(X) = E(X^2) - E(X)^2$ = 1.0299	M1 M1 m1 A1		
(b)(i)	0.51	B1	4 1	Applied in this case AWRT 1.03

AQA_JUNE_2012_1

1 (a)	0.2, 0.3	B1, B1		
(b)	$E(X) = 0 \times 0.2 + 1 \times 0.3 + 3 \times 0.5$ = 1.8 $E(X^2) = 0^2 \times 0.2 + 1^2 \times 0.3 + 3^2 \times 0.5$ $\text{Var}(X) = E(X^2) - E(X)^2 = 4.8 - 1.8^2$ $s.d. = \sqrt{1.56} = 1.25$	M1 A1 M1 M1 A1	2	CAO nms B2 Must be applied. Must be identified as $\text{Var}(X)$ AWRT nms B3
(c)	$P(\text{points} > 3.05) = 0$	B1F	5 1	If <i>their</i> $E(X) + \text{s.d.} < 3$ accept 0.5
	Total		8	

AQA_JAN_2008_5

5(a)(i)	$E(X) = 0 \times 0.005 + 1 \times 0.015 + 2 \times 0.08 + 3 \times 0.15 + 4 \times 0.75 = 3.625$	M1		method $E(X)$
(ii)	$E(X^2) = 13.685$ $V(X) = 13.685 - 3.625^2$ = 0.544375 $s.d. = \sqrt{0.544375} = 0.738$	M1 m1 m1 A1	5	method $E(X^2)$ method for variance method for s.d. 0.738 (0.737 ~ 0.739)

AQA_JUNE_2013_3

3(a)(i)	$E(X) = 10 \times 0.18 + 20 \times 0.44$ etc = 59.1	M1 A1	2	Or B2 for answer
(ii)	$E(X^2) = 10^2 \times 0.18 + 20^2 \times 0.44$ etc $= 8119.$ $\text{Var}(X) = E(X^2) - E(X)^2$ $= '8119' - '59.1^2$, $= 4626.19$ So s.d. = $\sqrt{4626.19} = 68.0$	B1 M1 A1	3	Showing what $E(X^2)$ comes from Complete method. Dep on B1 AG Condone 68
(iii)	$0.08 + 0.17 = 0.25$ or $0.18 + 0.44 + 0.13 = 0.75$ $1 - 0.75^3$ or use of $B(3, 0.25)$ $= 0.578$	B1 M1 A1	3	Allow for sight of 0.4219 AWRT
(b)(i) (ii)	Increase Increase	B1 B1	2	
(c)	Probability for 0 adds nothing extra to $E(X)$, while other probabilities fall reducing $E(X)$ Or Total withdrawn does not increase, but number of customers does Or $\text{£}0$ is below the original mean and adding extra values below the original mean will reduce the mean	E2	2	Some statement conveying correct concept. E1 for partial explanation
	Total		12	

AQA_JUNE_2014_1

1(a) (i)	0.57	B1		CAO
(ii)	$360 \times 0.57, 0.32 \text{ and } 0.11$ $= 205.2^\circ, 115.2^\circ, 39.6^\circ$	M1 A1	1	At least one Any two. CAO
(b)	Mean = $20 \times 0.57 + 50 \times 0.32 + 210 \times 0.11$ $= 50.5$ $20^2 \times 0.57 + 50^2 \times 0.32 + 210^2 \times 0.11 - 50.5^2$ $= 3328.75 \text{ s.d.} = \text{£}57.70$	M1 A1 M1 A1	2	AG 3328.75 seen unsupported earns M1 AWFW £57.60 to £57.70
(c)(i)	Mean = $10 \times 0.57 + 50 \times 0.32 + 210 \times 0.11$ $= \text{£}44.80$	B1	4	Or £50.50 - £5.70
(ii)	$1.2 \times 90 \times 44.80 - (50.5 \times 90)$ $= \text{£}293.40$	M1 A1	3	Accept £293

AQA_JUNE_2016_2

(a)(i)	$0.21 + 0.10 + 0.20$ $= 0.51$ ($= 51\% = \frac{51}{100}$)	B1	1	Answer in any of these three forms												
(ii)	$0.12^2 + 0.19^2 + 0.18^2 + 0.21^2 + 0.1^2 + 0.2^2$ $= 0.177$ ($= 17.7\% = \frac{177}{1000}$)	M1 A1	2	Allow 1 slip CAO. Answer in any of these three forms												
(b)(i)	New table <table border="1"><tr><td>0.50</td><td>1</td><td>1.50</td><td>2</td><td>3</td><td>5</td></tr><tr><td>0.12</td><td>0.19</td><td>0.18</td><td>0.21</td><td>0.10</td><td>0.20</td></tr></table>	0.50	1	1.50	2	3	5	0.12	0.19	0.18	0.21	0.10	0.20	B1		May be implied by next line or correct answer
0.50	1	1.50	2	3	5											
0.12	0.19	0.18	0.21	0.10	0.20											
	Mean = $0.50 \times 0.12 + 1 \times 0.19 \dots + 5 \times 0.20$ $= 2.24$	M1 A1		Correct method based on an attempt at new table. CAO												
	Special Cases: No working but correct answer B3 Wrong working but correct answer B2															
	$0.50^2 \times 0.12 + 1^2 \times 0.19 \dots + 5^2 \times 0.20 - '2.24'^2$ $= 7.365 - '2.24'^2$ $= 2.3474$ and $\sqrt{2.3474} = 1.53$	M1 A1	5	Complete method (their 2.24) AG												
(ii)	$'2.24' \pm 1.53 = 0.71, 3.77$ $0.19 + 0.18 + 0.21 + 0.10 = 0.68$	M1 A1	2	Their mean – both values required CAO. Or B2 for answer alone												
			10													

AQA_JUNE_2018_1

	SOLUTION	MARKS	TOTAL	COMMENTS
1 (a)	$0.4, 40\% \text{ or } \frac{2}{5}$	B1	1	Any form but not simply 40
(b)	0.6×0.25 $\times 2 = 0.3$ (or $30\% \text{ or } \frac{3}{10}$)	M1 A1		If unsupported answer 0.15 is given allow this M1 Any equivalent form
(c)	Mean = $1 \times 0.24 + 2 \times 0.36 \dots + 5 \times 0.03$ $= 2.44$ $1^2 \times 0.24 + 2^2 \times 0.36 \dots + 5^2 \times 0.03 - 2.44^2$ $= 0.24 + 1.44 + 1.35 + 3.52 + 0.75 - 2.44^2$ $= 7.3 - 2.44^2 = 1.3464$ and $\sqrt{7.3 - 2.44^2} = \sqrt{1.3464} (= 1.16)$	M1 A1 M1 A1	5	CAO. Unsupported 2.44 scores B2 Complete method (their 2.44) Products or results of products Either of these AG
(d)	$E(C) = 68 + 24 \times 1.44 = £102.56$ $\sigma_c = 24 \times 1.16 = 27.8(4)$ May use new table	B1 B1	2	102.56 or 102.6 or 103 27.8, or AFWW 27.80 to 27.90
		Total	10	

AQA_JUNE_2017_4

Q4	Solution	Mark	Total	Comment
(a)(i)	0.41, 41% or $\frac{41}{100}$	B1	1	Not simply 41
(ii)	Probability of being engraved = $1 - 0.26$ $(= 0.74)$ $(1 - 0.26)^2 \times 0.26$ ($= 0.142376$) Or stated use of $B(3, 0.74)$ $\times 3 = 0.427$ (to 3 sf)	B1 M1 A1	 3	Stated or used PI by answer AWRT
(iii)	Mean = $0 \times 0.26 + 1 \times 0.18 \dots + 8 \times 0.02$ $= 2.75$ Var = $0^2 \times 0.26 + 1^2 \times 0.18 \dots + 8^2 \times 0.02$ $- (2.75)^2$ $= 13.37 - (2.75)^2$ $= 5.8075$ ($= 5.81$ to 3 sf)	M1 A1 A1	 4	PI CAO Do not ignore rounding to 3 At least two of the products shown and subtracting their 2.75^2 , Must show something with at least 3 dp AWRT 5.81 (given)
(b)(i)	$5 + 0.40 \times "2.75"$ $= (\text{£})6.10$	M1 A1	 2	Or use of a correct new table. Their mean CAO. Condone 610 not labelled
(ii)	Either 5.8075 or 5.81×0.4^2 then square rooted to give $\text{£}0.96$ or 96p (to the nearest penny) Or $0.4 \times \sqrt{(5.8075 \text{ or } 5.81)}$ $= \text{£}0.96$ or 96p (to the nearest penny) Or use of a correct new table $s.d = \text{£}0.96$ or 96p (to the nearest penny)	M1 A1 (M1) (A1) (M1) (A1)	 2	CAO Ignore lack of units CAO Ignore lack of units Complete method including \sqrt CAO
	Total		12	

AQA_JAN_2007_3

3(a)	$E(X) = 225 \times 0.56 + 145 \times 0.32 + 249 \times 0.09 + 253 \times 0.03 = 202.4$	M1 A1	2	method correct expression - AG
(b)	s.d. = 40.2 $E(X^2) = 225^2 \times 0.56 + 145^2 \times 0.32 + 249^2 \times 0.09 + 253^2 \times 0.03 = 42578.36$ $V(X) = 42578.36 - 202.4^2 = 1612.6$ s.d. = 40.2	M1 m1 A1	3	B3 40.2 (40.1 ~ 40.3) or method for $E(X^2)$ method for $V(X)$ 40.2 (40.1 ~ 40.3)
(c)	mean 225 s.d. 0	B1 B1	2	225 cao 0 cao
(d)	more choice may attract more customers etc	E1	1	any sensible reason
Total			8	

AQA_JAN_2011_1

1(a)	$E(X) = 99 \times 0.5 + 125 \times 0.3 + 144 \times 0.2 = 115.8$ $E(X^2) = 99^2 \times 0.5 + 125^2 \times 0.3 + 144^2 \times 0.2 = 13735.2$ $V(X) = 13735.2 - 115.8^2 = 325.56$ s.d. = $\sqrt{325.56} = 18.04$	M1 A1 M1 A1	4	B2 115.8 (115.5 ~ 116) or M1 A1 B2 18.04 (18 ~ 18.1) or M1A1
(b)(i)	$E(Y) = 79 \times 0.25 + 99 \times 0.375 + 125 \times 0.225 + 144 \times 0.15 = 106.6$	M1 A1	2	M1 method A1 107 ag
(ii)	$106.6 \times 1.2 = 127.92 > 115.8$ hence increase in customers will mean increase in the total takings on tea bags despite the lower mean.	M1 m1 A1	3	M1 Any calculation which could be helpful in answering the question m1 attempt at a valid comparison A1 correct conclusion based on correct calculations — allow use of 107 for $E(Y)$
(c)	Extra customers in shop for cheap teabags may make additional purchases.	E1	1	E1 Any sensible point
Total			10	

AQA_JUNE_2007_3

3(a)	$E(X) = 0 \times 0.32 + 1 \times 0.25 + 2 \times 0.19 + 3 \times 0.12 + 4 \times 0.09 + 5 \times 0.03 = 1.5$	M1		method for $E(X)$
	$E(X^2) = 0^2 \times 0.32 + 1^2 \times 0.25 + 2^2 \times 0.19 + 3^2 \times 0.12 + 4^2 \times 0.09 + 5^2 \times 0.03 = 4.28$	M1		method for $E(X^2)$ – may be implied
	$\text{Var}(X) = 4.28 - 1.5^2 = 2.03$ $\text{s.d.} = \sqrt{2.03}$ $= 1.42$	m1		method for s.d.; allow for variance = 2.03
		A1	5	1.42(1.41~1.43)
(b)(i)	$\text{s.d.} = \sqrt{2.2}$ $= 1.48$	M1		method
		A1	2	1.48(1.48~1.49)
(b)(ii)	more houses in Cheadleville are advertised in the Clarion than in the Sentinel. The week to week variability is similar	E1 \checkmark		Clarion higher average
(c)	choose Clarion – since more houses in Cheadleville advertised on average	E1	2	variability similar
		B1 \checkmark	2	Clarion higher mean
	Total		11	

AQA_JUNE_2008_2

2(a)(i)	$E(X) = 120 \times 0.22 + 80 \times 0.28 + 75 \times 0.12 + 30 \times 0.38 = 69.2$	M1		Method for $E(X)$; AG
	$E(X^2) = 120^2 \times 0.22 + 80^2 \times 0.28 + 75^2 \times 0.12 + 30^2 \times 0.38 = 5977$	M1		Method for $E(X^2)$ – may be implied
(ii)	$V(X) = 5977 - 69.2^2 = 1188.36$	m1		Method for variance
	$\text{s.d.} = \pm 34.50$	m1		Method for s.d. – dependent on previous 3 marks
(b)	$\frac{69.2 \times 400}{120} = 230.7$	M1		34.50 (34.45 ~ 35.5) – ignore units
	231 full members needed	A1	2	CAO
(c)	No junior members bad for future of club. May be less than 231 applications for full membership.	E1	1	Any sensible reason
	Total		8	

AQA_JUNE_2009_2

2(a)	$\mu = 101.6$ $\sigma = 47.7$	B2 B2	4	CAO (allow 102) (or $E(X) = 50 \times 0.40 + 95 \times 0.16 + 135 \times 0.24 + 170 \times 0.20 = 101.6$ M1A1) $E(X^2) = 50^2 \times 0.40 + 95^2 \times 0.16 + 135^2 \times 0.24 + 170^2 \times 0.20 = 12598$ $V(X) = 12598 - 101.6^2 = 2275.44$ s.d. = $\sqrt{2275.44} = 47.7$ M1A1)
(b)(i)	$E(X) = 95 \times 0.45 + 135 \times 0.30 + 170 \times 0.25 = 125.75$ = 126 to 3sf	M1 A1	2	CAO; AG
(ii)	Will lose 20% of customers $0.8 \times 125.75 = 100.6$... which is less than 101.6. Hence, if estimate is correct, she will take less money.	M1 m1 A1	3	Any relevant calculation attempted Valid comparison - their figures Correct conclusion based on correct working or lose $0.2 \times 50 = 10$; gain $0.2 \times (95 - 50) = 9$ or $100 \times 101.6 = 101.60$ $(100 - 120) \times 125.75 = 100.60$
	Total		9	

AQA_JUNE_2010_1

1(a)	$E(X) = 40 \times 0.37 + 70 \times 0.18 + 100 \times 0.14$ (i) $+140 \times 0.12 + 190 \times 0.19 = 94.3$	M1		M1 method for $E(X)$
(ii)	$E(X^2) = 40^2 \times 0.37 + 70^2 \times 0.18 + 100^2 \times 0.14 + 140^2 \times 0.12 + 190^2 \times 0.19 = 12085$	M1		M1 method for $E(X^2)$ ag
(iii)	$V(X) = 12085 - 94.3^2 = 3192.51$ s.d. = $\sqrt{3192.51} = 56.5$	M1 m1A1	5	M1 method for variance m1 method for s.d. A1 56.5 (56.4 – 56.6)
(b)(i)	0.31	B1		B1 0.31 CAO
(ii)	0	B1	2	B1 0
(c)	Smaller, 0 is less than the mean of fare-paying passengers.	B1 B1	2	B1 smaller B1 $0 < 94.3$ or equivalent
	Total		9	

AQA_JUNE_2011_2

2(a)(i)	$E(X) = 100 \times 0.22 + 200 \times 0.31 + 300 \times 0.21 + 400 \times 0.12 + 600 \times 0.14 = 279$	M1 A1		M1 method A1 279 CAO AG
(ii)	$E(X^2) = 100^2 \times 0.22 + 200^2 \times 0.31 + 300^2 \times 0.21 + 400^2 \times 0.12 + 600^2 \times 0.14 = 103100$ $V(X) = 103100 - 279^2 = 25259$ $s.d. = \sqrt{25259} = 158.9$	M1 A1	4	B2 159 (158.5 ~ 159.5) or M1A1 SC: allow B1 for variance = 25259
(b)	Standard deviation would increase as distribution would be more spread out	B1 E1	2	B1 increase E1 reason
(c)	Standard deviation would be less than for X . Nearly all cars have parked for free so there is little variability in the distribution.	B1 E1	2	B1 less than X E1 reason
	Total		8	