

Hypothesis Testing for the Mean

STEP / TEST	One Sample z Test	One Sample + Test	Two Sample z Test	Two Sample + Test	Paired + Test
1. Hypotheses	H_0 : μ = value	H_0 : μ = value	H_0 : $\mu_A = \mu_B$	H_0 : $\mu_A = \mu_B$	H_0 : $\mu d = 0$
	H_1 : $\mu < \text{Value}$ H_1 : $\mu > \text{Value}$ H_1 : $\mu \neq \text{Value}$	H_1 : $\mu < \text{Value}$ H_1 : $\mu > \text{Value}$ H_1 : $\mu \neq \text{Value}$	Η ₁ : μα < μΒ Η ₁ : μα > μΒ Η ₁ : μα ≠ μΒ	H ₁ : μA < μB H ₁ : μA > μB H ₁ : μA ≠ μB	H_1 : $\mu_d < 0$ H_1 : $\mu_d > 0$ H_1 : $\mu_d \neq 0$
2. One or two tailed	If H_1 uses the '<' or '>' symbol then it is one tailed If H_1 uses the ' \neq ' symbol then it is two tailed				
3. Significance level	Always 5% unless otherwise stated				
4. Test Statistic	METHOD A $TS = \overline{X}$ $METHOD B (standardization)$ $\frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	METHOD (standardization) $\frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$	Page & from the formula booklet $\frac{\bar{d}-\mu}{\frac{s}{\sqrt{n}}}$ where \bar{d} is the mean of the differences between the pairs of data	Page φ from the formula booklet $\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sqrt{\left(\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}\right)}}$	Page 6 from the formula booklet $\frac{(\bar{X}-\bar{Y})-(\mu_{X}-\mu_{Y})}{\sqrt{S_{p}^{2}\left(\frac{1}{n_{X}}+\frac{1}{n_{Y}}\right)}}$ where $S_{p}^{2}=\frac{(n_{X}-1)S_{X}^{2}+(n_{Y}-1)S_{Y}^{2}}{n_{X}+n_{Y}-2}$
5. Critical Value & Critical Region	METHOD A Casio ClassWiz MENU 7: Distributions 3: Inverse Normal Area: α (1 tailed) α /2 (2 tailed) σ : σ/\sqrt{n} μ : μ from Ho METHOD B Table 4 gives us the CV from the percentage points 1- α (1 tailed) 1- $(\alpha/2)$ (2 tailed)	Table 5 gives us the CV from the percentage points 1- α (1 tailed) 1- (α /2) (2 tailed)	Table 4 gives us the CV from the percentage points 1- α (1 tailed) 1- $(\alpha/2)$ (2 tailed)	Table 5 gives us the CV from the percentage points 1- α (1 tailed) 1- $(\alpha/2)$ (2 tailed)	Table 5 gives us the CV from the percentage points 1- α (1 tailed) 1- $(\alpha/2)$ (2 tailed)
6. Compare and Conclude	If the test statistic lies within the critical region we REJECT Ho Use the language from the question to help word your conclusion				