

A Level Statistics

AQA Past Exam Questions

TOPIC: Hypothesis Testing

Two Sample Mean

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions **on paper**
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise stated, statistical tests should be carried out at the 5% significance level.
- When a calculator is used, the answer should be given to three significant figures unless otherwise stated.

Information

- **You may use the** booklet 'Statistical Formulae and Tables'
- There are **17** questions in this question paper. The total mark for this paper is **125**
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.
- Check your answers if you have time at the end.

AQA_SS05_JUNE_2018_3b

(b) (i)	$S_p^2 = \frac{9 \times 0.9615^2 + 11 \times 1.21^2}{20} = 1.22$	M1 AG	2	Numerator of formula correct using "their" s_A or s_A^2 ($=0.9244$)
				CSO with full correct working
(ii)	$H_0: \mu_B = \mu_A + 0.2$	B1		OE Other suffices must be clearly defined.
	$H_1: \mu_B > \mu_A + 0.2$	B1		Or 3000
	$\bar{x}_A = 30$	M1 M1 A1		Numerator correct using <i>their</i> \bar{x}_A Denominator correct AWRT 1.48 (allow rescaling to cm for M1M1A1)
	$t.s. = \frac{30.9 - 30 - 0.2}{\sqrt{1.22 \left(\frac{1}{10} + \frac{1}{12} \right)}} = 1.48$	B1		correct c.v. or p-value correct, compared to 0.1
	$c.v. t_{20} = 1.325$ or $p = 0.0773 < 0.1$	A1dep		Correct conclusion dependent on all values correct.
	(1.48 > 1.325) Reject H_0 .	E1dep		In context
	There is significant evidence (at the 10% level) that rolls of baking parchment of Brand B are <u>more than 20 cm longer on average</u> than those of Brand A.	8		

AQA_SS05_JUNE_2016_6b

6(b)	$H_0: \mu_{car} = \mu_{alt \text{ means}} + 1$ $H_1: \mu_{car} > \mu_{alt \text{ means}} + 1$ $\bar{x}_{car} = 26.1 \quad \bar{x}_{alt. \text{ means}} = 24.225$ $S_{car} = 2.09 \quad S_{alt. \text{ means}} = 1.74$ $S_p^2 = \frac{10 \times 2.09^2 + 7 \times 1.74^2}{17} = 3.82$ $t = \frac{26.1 - 24.225 (-1)}{\sqrt{3.816 \times \left(\frac{1}{10} + \frac{1}{7} \right)}} = 0.964$ $cv t_{17} = 1.740$ <p>$0.964 < 1.740$ or $p = 0.174 > 0.05$; accept H_0</p> <p><u>No significant evidence</u> at the 5% level that male students who travel to college by <u>car</u> have a BMI which is, <u>on average</u>, more than <u>1 kg/m²</u> <u>greater</u> than those who travel to college by <u>alternative means</u> of transport.</p>	B1 B1 B1 B1 M1 M1 M1 A1 B1 A1dep E1 dep	B1: an inequality in μ and "1" B1: all correct; other suffices must be clearly identified – allow "c" and "a". B1; either mean (cao, 24.2 ~24.3) B1: either s (2.09 ~2.10, 1.73 ~ 1.74) $s_p^2 = 3.81617\dots \quad s_p = 1.9535\dots$ NMS award M1 for value used in range 3.80 ~ 3.84 M1: numerator M1: denominator A1: awfw 0.9 ~ 1.0 ; must have gained <u>all</u> M's. cao, accept 1.74, condone \pm Dep A1 for t.s. and B1 for positive c.v. p: awfw 1.66 ~ 1.90 (0.1743..) o.e. conclusion in context dep previous A1	
				11
				Total 20

6(b) Alt 1 for lower tail

$$ts = \frac{24.225 - 26.1 (+1)}{\sqrt{3.816 \times \left(\frac{1}{10} + \frac{1}{7} \right)}} = -0.964 \quad M1 \quad M1 \quad M1A1 ; t_{17} = \pm 1.740 \quad B1$$

- 0.964 > -1.74 ; accept H_0 A1 dep (nb signs resolved) ; E1 dep as on MS

Alt 2

Use of p value and if no intermediate evidence seen: B1 B1 hypotheses as on MS ; $p = 0.166 \sim 0.190$ (0.1743...) implies B1 B1 M1 M1 M1 A1 (outside this range and they lose all 6 marks) ; comparing $0.174\dots > 0.05$ B1 and accept H_0 A1 (dependent on previous A1 and B1) ; E1 dep as on MS.

5(b)	$H_0: \mu_x = \mu_y$ $H_1: \mu_x > \mu_y$ $\bar{x} = 3.88 \quad \bar{y} = 3.49$ $S_p^2 = \frac{5 \times 0.582^2 + 8 \times 0.683^2}{13} = 0.417$ $t.s. = \frac{3.88 - 3.49}{\sqrt{0.417 \left(\frac{1}{6} + \frac{1}{9} \right)}}$ $= 1.142$ $c.v. t_{13} = \pm 1.35 \text{ or } p\text{-value} = 0.137 > 0.1$ $1.142 < 1.35 \text{ accept } H_0$ <u>Evidence at the 10% level that Emily's suspicion is not supported.</u>	B1 B1 M1 M1 M1 A1 B1 A1dep E1dep	both hypotheses either $3.88 ; 3.48 \sim 3.50 (3.4911\dots)$ M1: use of correct formula $(0.417\dots; s_p = 0.6459\dots)$ numerator (accept $(3.49 - 3.88)$) denominator (fit on s_p^2 if M1 earned) $1.13 \sim 1.15$ (± to agree with their numerator) ± 1.35 or $p\text{-value} = 0.13 \sim 0.14 (0.1371\dots)$ compared with 0.1 Dep on A1 for t.s. , B1 for c.v. or p - value and correct signs. (accept $-1.35 < -1.142$) Conclusion in context dep on previous A1dep oe e.g. Alt: <u>insufficient evidence</u> at 10% level that babies born in the summer months are <u>on average heavier</u> than those born at other times of the year.
			9

5(c)(i)	H_0 has been accepted so a Type II error might have been made.	E1	stating eg Type II error is when H_0 is accepted – H_0 must be accepted in (b) s.c. B1 for Type I error etc... if H_0 is rejected in (b)
(ii)	<u>It was incorrectly concluded that there was no difference between the mean weight of babies born in the summer months and the mean weight of babies born at other times of the year.</u> or <u>Mean weight of babies born in the summer months is greater than the mean weight of babies born at other times of the year.</u> or <u>H_0 incorrectly accepted; Emily's suspicion should have been justified.</u>	E1dep, E1 dep	E1 explanation of a Type II error eg H_0 accepted when it should have been rejected ; dep E1 in c(i) E1 all correct – must have “mean” or “average” or “Emily’s suspicion”

2(a)	$\bar{x}_{2012} = 264 \quad \bar{x}_{2010} = 256.4$ $\sigma_{2012}^2 = 551 \quad \sigma_{2010}^2 = 660$ ($s_{2012}^2 = 558 \quad s_{2010}^2 = 669$)	B1, B1 B1, B1		264, 256~256.5 Accept either σ^2 or s^2 but must be consistent. awfw 551~558, 660~670
			4	
(b) (i)	$H_0: \mu_{2012} = \mu_{2010}$ $H_1: \mu_{2012} > \mu_{2010}$	B1		both
t.s.	$z = \frac{264 - 256.4}{\sqrt{\left(\frac{558}{90} + \frac{669}{75}\right)}}$ $= 1.954$	M1 M1		M1: numerator ; accept 256.4~264 M1: denominator ; allow use of (consistent) s^2 or σ^2 (ft only on a small numerical slip)
c.v.	$z = 1.6449$	A1 B1		1.9~2.1; accept \pm 1.64~1.65 ; accept \pm or $p = 0.0253$ (0.024~0.026) compared with 0.05
	1.954 > 1.6449 reject H_0 Evidence at the 5% level that the <u>mean</u> weight of chicks was <u>greater</u> in 2012 than in 2010.	E1		Comment in context; All working correct with consistent signs. Accept "mean weight greater in 2012" oe
			6	
	(ii) sample sizes are large so means are approx. normally distributed due to Central Limit Theorem.	E2		E1 large samples E1 CLT
			2	
(c)	This would mean concluding that the mean weight of chicks was greater in 2012 than in 2010 when in fact the means were the same.	E2		Statement in context s.c. E1 – no context: eg Type 1 error is when H_0 is rejected when it is true.
			2	

AQA_SS05_JUNE_2014_2

2(a)	$H_0: \mu_{females} - \mu_{males} = 1.5\text{cm}$ $H_1: \mu_{females} - \mu_{males} > 1.5\text{cm}$	B1 B1	2	B1 : an inequality <u>and</u> 1.5 B1 : both correct
(b)	$\text{t.s.} = \frac{(8.54 - 6.28 - 1.5)}{\sqrt{\left(\frac{0.6^2}{10} + \frac{0.6^2}{8}\right)}} = 2.67$ $z = 2.3263$ $2.67 > 2.3263$ - reject H_0 Sufficient evidence at 1% level to suggest that the <u>mean length of female toads</u> is more than 1.5cm greater than the <u>mean length of male toads</u> .	M1 M1 A1 B1 A1 E1dep		numerator , allow “8.54 – 6.28” seen denominator awfw 2.67~2.675 Ignore sign , p - value : 0.00378 ~ 0.00379 comparison of correct cv with correct t.s; both + ve or both - ve. Statement in context – dependent on previous A1. 6
			8	
	Notes: Hypotheses: must use μ or population mean. Allow f and m as suffices but other suffices only if clearly assigned.			

AQA_SS05_JUNE_2013_2

2	$H_0: \mu_A = \mu_B + 24$ $H_1: \mu_A > \mu_B + 24$ $\bar{x}_A = 473 \quad \bar{x}_B = 438$ test statistic $z = \frac{473 - 438 - 24}{\sqrt{\frac{7^2}{6} + \frac{10^2}{8}}} = 2.29$ cv 5% level 1-tail test $z = 1.6449$ $2.42 > 1.6449$ reject H_0 Evidence at the 5% level to support Nasreen's belief.	B1 B1 B1 M1 M1 A1 B1 A1 E1		(s.c. B1 for both $H_0: \mu_A = \mu_B$ and $H_1: \mu_A > \mu_B$) B1 both means; awfw 472 ~ 473 and 438 ~ 439 M1 Numerator (allow $(473 - 438)$ or $(438 - 473 - 24)$) M1 Denominator A1 awfw 2.25 ~ 2.45 B1 awfw 1.64 ~ 1.65 (condone \pm) dep A1 for ts (consistent with hypotheses) and B1 for cv Correct comment in context dep. on previous A1 - must mention mean or average and some element of doubt. eg Some evidence that boxes of eggs from Alaric are more than 24gm heavier on average than those from Belinda
	Total		9	

AQA_SS05_JUNE_2012_4aii/b

<p>(ii)</p>	$\bar{x}_1 = 648.6$ $\bar{x}_2 = 619.86$ Pooled variance estimate $s_p^2 = (3742.49 \times 9 + 4716.14 \times 6) / 15$ $= 4131.95$ $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$ $t = \frac{(648.6 - 619.86)}{\sqrt{4131.95(1/10 + 1/7)}}$ $= 0.907$ c.v. t_{15} is 1.753 Accept H_0 i.e. no significant evidence of a reduction in Saturday takings after October 2011	B1 M1 B1 B1 M1 M1 A1 B1 B1 A1 \checkmark A1 \checkmark	B1 M1 B1 B1 M1 M1 A1 B1 B1 A1 \checkmark A1 \checkmark	B1 648.6 (648 ~ 649) and 619.86 (619.5 ~ 620) M1 method for pooled variance B1 one hypothesis correct B1 both hypotheses correct - don't penalise the same error twice M1 method for numerator M1 method for denominator - A1 0.907 (0.9 ~ 0.91) - ignore sign B1 15 df B1 1.753 - ignore sign A1 \checkmark accept H_0 - must be compared with correct tail of t A1 \checkmark conclusion in context 0 for contradiction (or $p = 0.189$ compared with 0.05)
-------------	--	--	--	---

4(b)(i) (ii) (b)(iii)	$H_0: \mu_2 = \mu_1 + 50$ $H_1: \mu_2 > \mu_1 + 50$ $801,887,1013,884,964,1014,1146$ critical value of t_{15} is 2.602 reject H_0 , conclude total takings will be increased by more than £50.	B1 B1 M1 A1 B1 B1	2 2 2 3	B1 1 correct hypothesis B1 both correct - only penalise the same mistake once M1 method A1 accuracy - allow one slip B1 2.602 B1 conclusion (M implied) B1 in context must be compared with t- values (or $p=0.0000936$)
-------------------------------------	--	----------------------------------	------------------	--

AQA_SS05_JUNE_2011_5aii

(ii)	<p>pooled variance estimate</p> $s_p^2 = \frac{(244.125 \times 7 + 316.271 \times 6)}{13}$ $= 277.423$	M1	method for pooled variance
	$H_0: \mu_{ABC} = \mu_{XYZ} + 10$	B1	one hypothesis correct
	$H_1: \mu_{ABC} > \mu_{XYZ} + 10$	B1	both hypotheses correct – don't penalise the same error twice
	$t = \frac{(205.125 - 192.429 - 10)}{\sqrt{277.423 \left(\frac{1}{8} + \frac{1}{7} \right)}}$ $= 0.313$	M1	method for numerator method for denominator
	c.v. t_{13} is 1.35	A1	allow $\frac{s_A^2}{8} + \frac{s_B^2}{7}$ 0.313 (0.31 ~ 0.32); ignore sign
	accept H_0 no significant evidence to show that XYZ couriers are more than 10 minutes faster than ABC couriers	A1F	1.35; ignore sign accept H_0 – must be compared with correct tail of t – disallow contradiction
	$P = 0.3797$ ($0.379 \sim 0.4$)	A1F	conclusion in context – needs previous A mark
		9	

AQA_SS05_JUNE_2010_2

2(a)	$\bar{x} = 76.928 \quad s_x = 2.588896$ $\bar{y} = 73.0625 \quad s_y = 2.243045$ $H_0: \mu_x = \mu_y \quad H_1: \mu_x \neq \mu_y$ <p>pooled variance estimate</p> $s^2 = (6 \times 2.588896^2 + 7 \times 2.243045^2) / 13$ $= 5.80254 \quad (s=2.4088)$	B1	B1 76.9 (76.9~77), 73.1 (73~73.1) 2.59 (2.58~2.6), 2.24 (2.24~2.25)
	$t = \frac{76.928 - 73.0625}{\sqrt{5.80254 \left(\frac{1}{7} + \frac{1}{8} \right)}}$ $= 3.8655 / 1.2467$ $= 3.10$	M1 m1 M1m1	B1 one correct hypothesis – generous B1 both correct – ungenerous M1 attempt at pooled variance m1 correct method for pooled variance
	$c.v. t_{13} = \pm 3.012$ <p>Reject H_0. Conclude that mean water temperature after 5 hours for flask A is different from (higher than) for flask B</p>	A1 B1B1 A1 \checkmark	M1 difference of means/their standard deviation m1 correct method for t A1 3.10 or -3.10 (3.09 ~ 3.11)
		12	B1 13 df B1 3.012 or 3.01 ignore sign A1 \checkmark conclusion – must be compared with correct tail of t A1 \checkmark in context – requires previous A1 \checkmark
(b)	Conditions not controlled e.g. background temperature, amount of water in flask. Conditions may differ between first 7 days and last 8 days.	E1	E1 conditions not controlled E1 order of experiments not randomised or balanced one mark for any sensible point
	Total	14	

AQA_SS05_JUNE_2008_3b

<p>(b)</p> $\bar{x}_B = 69.8429 \quad \bar{x}_A = 55.7333$ <p>pooled variance estimate, s_p^2</p> $\frac{6 \times 9.1354^2 + 5 \times 11.030^2}{6+5} = 100.852$ $s_p = 10.043$ $H_0: \mu_B = \mu_A \quad H_1: \mu_B > \mu_A$ $t = \frac{69.8429 - 55.7333}{10.043 \sqrt{\frac{1}{7} + \frac{1}{6}}}$ $= 2.53$ <p>c.v. t_{11} is 1.796</p> <p>reject H_0, significant evidence that mean speed has been reduced after introduction of speed cameras.</p>	<p>M1</p> <p>M1</p> <p>m1</p> <p>A1</p> <p>B1</p> <p>B1\checkmark</p> <p>A1\checkmark</p> <p>A1\checkmark</p>	<p>9</p>	<p>method for pooled variance</p> <p>both hypotheses - needs μ or population method for t - their pooled variance</p> <p>allow if $\frac{s_x^2}{7} + \frac{s_y^2}{6}$ used for variance</p> <p>correct method for t - ignore sign</p> <p>2.53 (2.52 ~ 2.53) - ignore sign</p> <p>11df</p> <p>1.796 - ignore sign, their df</p> <p>conclusion - needs one sided t-test plus +ve ts compared with +ve cv or -ve ts compared with -ve cv in context - allow arithmetic errors, incorrect t-value, 2-sided test.</p>
---	--	----------	--

AQA_SS05_JUNE_2009_5b

<p>5(cont)</p> <p>(b)</p> $H_0: \mu_p = \mu_s + 5$ $H_1: \mu_p < \mu_s + 5$ $z = \frac{19.7333 - 15.2143 - 5}{\sqrt{(0.95^2/6 + 0.65^2/7)}}$ $= -1.05$ <p>c.v. -1.2816</p> <p>Accept H_0, ie accept mean breaking strength of premium line is at least 5kg greater than that of standard line</p> <p><i>p-value 0.148 (0.146 ~ 0.149) compare with 0.1</i></p>	<p>B1</p> <p>M1</p> <p>M1</p> <p>A1</p> <p>B1</p> <p>A1\checkmark</p> <p>A1\checkmark</p>	<p>7</p>	<p>Hypotheses</p> <p>Method for variance</p> <p>Method for z - their variance</p> <p>-1.04 ~ -1.06 - ignore sign</p> <p>-1.28 ~ -1.282 - ignore sign</p> <p>Accept H_0 - must be compared with correct tail of z - needs both M marks</p> <p>Conclusion in context - needs previous A1\checkmark</p> <p><i>If t used, maximum B1M0M1A0B1 (for 1.363) A0A0</i></p>
---	---	----------	---

AQA_SS05_JUNE_2007_3b

<p>(b)</p> <p>$H_0: \mu_M - \mu_A = 1$</p> <p>$H_1: \mu_M - \mu_A > 1$</p> <p>CV of $z = 1.6449$</p> <p>sample value of $z = \frac{(61.7-58.9)-1}{2.1\sqrt{\frac{1}{9} + \frac{1}{12}}}$</p> <p>$= 1.94$</p> <p>$1.94 > 1.6449$ so reject H_0. There is sufficient evidence at the 5% level to support the trainer's claim</p>	<p>B1</p> <p>B1</p> <p>B1</p> <p>M1</p> <p>m1</p> <p>A1</p> <p>A1✓</p>	<p>μ_M, μ_A reversed, lose first B1 and last A1</p> <p>} or equivalent</p> <p>If $H_1 \neq$ must have 1.96 accept 1.64, 1.645 or $P(Z > 1.94) = 0.2619$</p> <p>difference of means over sd correct form of sd</p> <p>CAO; AWRT ft on sample value and CV</p>	<p>7</p>
--	--	--	----------