

The Exponential Distribution

The exponential distribution is the distribution of the intervals between successive Poisson events

The parameters for the exponential distribution are:

$$X \sim \text{Exp}(\lambda)$$

Exponential mean = $1 / \lambda$... and therefore $\lambda = 1 / \text{mean}$

Exponential variance = $1 / \lambda^2$... and therefore s.d. = $1 / \lambda$

This information can be found on page 5 in the formula booklet

NOTE: due to the relationship between the Poisson and Exponential distributions the parameter λ is used but the mean is $1 / \lambda$.

The exponential cumulative probability formula is:

$$P(X \leq x) = 1 - e^{-\lambda x}$$

- where e is the mathematical constant which is approximately equal to 2.71828

- where λ is the Poisson parameter for the related discrete distribution

$$\text{We know that } P(X \leq x) = 1 - e^{-\lambda x}$$

This information can also be found on page 5 in the formula booklet

Due to the laws of inequalities, we know that:

$$P(X < x) = P(X \leq x) = 1 - e^{-\lambda x}$$

$$P(X > x) = P(X \geq x) = 1 - (1 - e^{-\lambda x}) = e^{-\lambda x}$$

$$P(a < X < b) = P(X \leq b) - P(X \leq a) = 1 - e^{-\lambda b} - 1 - e^{-\lambda a} = e^{-\lambda a} - e^{-\lambda b}$$