

Solutions

Use the rules for linear combinations of independent Poisson Variables to find these probabilities (out of context)

$X \sim Po(2)$ and $Y \sim Po(3)$. Find $P([X+Y] = 5)$

0.1755

$X \sim Po(2)$ and $Y \sim Po(3)$. Find $P([X+Y] < 7)$

0.7622

$X \sim Po(12)$ and $Y \sim Po(18)$. Find $P([X+Y] = 35)$

0.0453

$X \sim Po(12)$ and $Y \sim Po(18)$. Find $P([X+Y] \leq 31)$

0.6186

$X \sim Po(7)$ and $Y \sim Po(2)$. Find $P([2X] = 10)$

0.0663

$X \sim Po(7)$ and $Y \sim Po(2)$. Find $P([2X] < 11)$

0.1757

$X \sim Po(2.4)$ and $Y \sim Po(2.1)$. Find $P([2Y] = 3)$

0.1852

$X \sim Po(2.4)$ and $Y \sim Po(2.1)$. Find $P([2Y] \leq 4)$

0.5898

$X \sim Po(1.9)$ and $Y \sim Po(2.5)$. Find $P([2X+2Y] = 8)$

0.1344

$X \sim Po(1.9)$ and $Y \sim Po(2.5)$. Find $P([2X+2Y] < 9)$

0.4823

Solutions

Use the rules for linear combinations of independent Poisson Variables to find these probabilities (in context)

A computer help line receives on average 2 calls every 10 minutes. Find the probability that they will receive exactly 12 calls in a thirty minute period

0.0000 0.0112 0.9999 0.9997

A computer help line receives on average 6 calls every 30 minutes. Find the probability that they will receive no calls in a ten minute period

0.0025 0.8647 0.1353 0.0002

A bad stretch of road has, on average, 65 accidents per year. Find the probability that over a two-week period there will be exactly 3 accidents

0.0933 0.2137 0.7576 0.9617

A stretch of road has, on average, 22 accidents per year. Find the probability that over a three-year period there will be no more than 50 accidents

0.0000 0.0068 0.9999 0.0244

Electric wire is produced in lengths of 300 metres. On average there is 1 defect in every 3000 metres of wire produced. Find the probability that in a 300 metre length there will be at least one defect.

0.9048 0.0952 0.9953 0.0047

Electric wire is produced in lengths of 250 metres. On average there is 1 defect in every 5000 metres of wire produced. Find the probability that in a 250 metre length there will be at least one defect.

0.3679 0.6321 0.9512 0.0488

The number of radioactive emissions from two sources, A and B, are independent Poisson distributions with means of 1.5 and 2.5 per minute, respectively. Find the probability that there are a total of 7 emissions from A and B in 2 minutes.

0.1396 0.0595 0.9489 0.4530

The number of measurable emissions from two sources, X and Y, are independent Poisson distributions with means of 2.7 and 2.9 per minute, respectively. Find the probability that there are a total of 10 emissions from X and Y in 2 minutes.

0.9718 0.0309 0.4362 0.1170

The number of telephone calls received at a switchboard averages 2 every 5 minutes. Calculate the probability of there being at least 6 calls in the next 10 minutes

0.1042 0.0120 0.2149 0.1107

The number of telephone calls received at a switchboard averages 12 every 2 minutes. Calculate the probability of there being at least 200 calls in the next half hour.

0.9251 0.0749 0.9348 0.0652